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ABSTRACT: The background error covariance (B) behaves differently and needs to be carefully defined in cloudy areas

due to larger uncertainties caused by the models’ inability to correctly represent complex physical processes. This study

proposes a new cloud-dependent B strategy by adaptively adjusting the hydrometeor-included B in the cloudy areas ac-

cording to the cloud index (CI) derived from the satellite-based cloud products. The adjustment coefficient is determined

by comparing the error statistics of B for the clear and cloudy areas based on the two-dimensional geographical masks.

The comparison highlights the larger forecast errors and manifests the necessity of using appropriate B in cloudy areas.

The cloud-dependent B is then evaluated by a series of single observation tests and 3-week cycling assimilation and fore-

casting experiments. The single observation experiments confirm that the cloud-dependent B allows cloud dependency for

the multivariate analysis increments and alleviates the discontinuities at the cloud mask borders by treating the CI as an

exponent. The impact study on regional numerical weather prediction (NWP) demonstrates that the application of the

cloud-dependent B reduces analysis and forecast bias and increases precipitation forecast skills. Diagnostics of a heavy

rainfall case indicate that the application of the cloud-dependentB enhances themoisture, wind, and hydrometeors analyses

and forecasts, resulting in more accurate forecasts of accumulated precipitation. The cloud-dependent piecewise analysis

scheme proposed herein is extensible, and a more precise definition of CI can improve the analysis, which deserves future

investigation.

SIGNIFICANCE STATEMENT: Background error covariance (B) provides important statistics to quantify errors in

model background fields for data assimilation. Themajority of variational-based assimilation systems use the sameB for

the cloudy and clear skies. However, the numerical weather prediction models (NWP) typically have less accuracy in

cloudy areas; hence, discrepancies inB are expected between the cloudy and clear areas. To use appropriateB in cloudy

areas, this study proposes a cloud-dependent piecewise assimilation scheme in which B is adaptively adjusted according

to a real-time two-dimensional cloud index (CI) generated by satellite-based cloud products. The newly proposed

scheme is evaluated by cycling assimilation and forecast experiments over a 3-week period.Analysis and forecasts reveal

that the cloud-dependent B is able to represent the larger errors in cloudy regions, resulting in improved fitting to

observations and improved precipitation forecasts.

KEYWORDS: Satellite observations; Clouds; Data assimilation; Regional models

1. Introduction

It is a continuing challenge for the research community and

the operational centers to improve the atmosphere’s initial

state (Li et al. 2016; Bannister 2017). Various data assimilation

(DA) methods have been demonstrated to be able to improve

the initial condition for numerical weather prediction (NWP),

among which the variational framework DA, such as three-

and four-dimensional variational assimilation (3D-Var and

4D-Var, respectively) and ensemble-based variational as-

similation (EnVar), are widely applied operationally (e.g.,

Brousseau et al. 2011; Ingleby et al. 2013; Aranami et al. 2015;

Wu et al. 2017) due to their strong extensibility to assimilate

multiple kinds of observations including nonconventional

remote sensing observations. One of the indispensable com-

ponents of the variational framework is background error

covariance (B) because it provides spatial and cross-variable

correlations (Daley 1991; Bannister 2008a,b; Chen et al. 2013;

Descombes et al. 2015). Although various EnVar methods

(e.g., Wang et al. 2008a,b; Wang et al. 2017, 2018) have been

proposed to update B with flow dependence, the static and

homogeneous B is still included in operational DA.

In reality, B can behave significantly differently between

cloudy and clear areas due to large differences in physical

processes. Cloud andprecipitation systems are generally associated

with significant nongeostrophic motion, resulting in larger vari-

ances, stronger cross correlation between control variables (CVs),

and smaller horizontal decorrelation length scales, both for the

hydrometeor and nonhydrometeor variables (Caron and Fillion

2010;Montmerle and Berre 2010;Ménétrier andMontmerle 2011;

Michel et al. 2011). These differentB behaviors may be attributedCorresponding author: Yaodeng Chen, keyu@nuist.edu.cn
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to the complexity of the physical processes when cloud and

precipitation occur due to their direct and indirect influence on

the atmosphere (Errico et al. 2007) and highly approximate

parameterization schemes of nonlinear microphysical pro-

cesses (Lopez 2007). These findings lead us to believe that

different B should be applied for the assimilation in the cloudy

and precipitation areas.

To use different B in the assimilation under the cloudy and

precipitation area, Montmerle and Berre (2010) developed a

heterogeneous B matrix by applying geographical masks and

incorporated it in the Météo-France operational model

(AROME) to enable piecewise analysis. Their approaches

conduct analysis with different balances and a spatial distribu-

tion according to the weather types. Ménétrier and Montmerle

(2011) further addressed the issue of mask-borders discontinu-

ities by proposing a convolution of normalized Gaussian kernel

and applied this heterogeneous B to the analysis and prediction

of fog cases. Their studies demonstrate the feasibility of piece-

wise assimilation and the positive impacts of heterogeneous B

on the assimilation system. However, the absence of the hy-

drometeor CVsmakes this heterogeneousB less appropriate for

analyzing the cloud components.

The hydrometeor CVs were introduced into heteroge-

neous B by Michel et al. (2011). Detailed B structures for

hydrometeor variables and nonhydrometeor variables were

diagnosed for clear and precipitation areas in their study.

Chen et al. (2016) further applied the hydrometeor-included

B to assimilate satellite cloud water/ice path for the real

precipitation cases. Assimilating the cloud observations with

the hydrometeor-included B in their study showed great po-

tential for improving precipitation forecast. However, the B

in their study is isotropic and homogeneous for all CVs, ig-

noring the different error characteristics under the cloudy

and clear skies. Hydrometeor forecast errors vary signifi-

cantly in space due to the intrinsically heterogeneous nature

of hydrometeor fields (Meng et al. 2019; Destouches et al.

2020), suggesting the necessity of using different B for clear

and cloudy areas.

To achieve the piecewise analysis for different weather

types, a new cloud-dependent B strategy is proposed in this pa-

per and implemented for theWeather Research and Forecasting

(WRF) DA system (WRFDA) variational framework. With the

inclusion of hydrometeors, B is modeled separately for the

cloudy and clear areas in spectral space (also known as the em-

pirical orthogonal function (EOF) space). The WRFDA is then

updated to implement the adaptive adjustment ofB for each CV

according to the real-time cloud index (CI), which is quantified

as a normalized two-dimensional field using the real-time

cloud amount from satellite-based cloud products. This

strategy provides an alternative option for piecewise analysis

aside from redesigning the heterogeneous B in Montmerle

and Berre (2010). Moreover, cloud dependencies are also

introduced into the assimilation system by using the cloud-

dependentB. Although various forms of Ensemble-based data

assimilation (EnKF) could provide the real flow-dependent B

in an ensemble subspace based on an ensemble of forecasts

(Houtekamer and Mitchell 1998; Ott et al. 2004; Anderson

2012; Barker et al. 2012; Wang et al. 2017, 2018), the heavy

computational pressure associated with ensemble forecasts still

hinders its popularization in some operational meteorological

centers (Hamill and Snyder 2000). From this perspective, a

flow-dependent scheme in a variational framework with a very

low computational cost is still valuable to be developed. The

difference is that the flow-dependent information comes from

satellite cloud observations rather than ensemble forecasts.

Section 2 provides details on the implementation of the

cloud-dependent piecewise analysis. Section 3 gives the sta-

tistics for B with the inclusion of hydrometeors and their

comparisons over the clear and cloudy areas. The single-

observation experiments using the cloud-dependent B are

presented in section 4. Section 5 presents the performance of

the cloud-dependent B application on 3-week rainfall events.

A heavy rainfall event diagnosis is described in section 6.

Section 7 summarizes conclusions and discussion.

2. Cloud-dependent piecewise assimilation
implementation

Following the studies of Montmerle and Berre (2010) and

Ménétrier andMontmerle (2011), we develop a heterogeneous

B to enable piecewise analysis when clouds exist. Different

from the previous studies, an alternative technique is devel-

oped to deduce the real-time normalized 2D CI, namely using

the cloud liquid (LWP) and ice (IWP) water path from the

Langley Research Center (LaRC) at NationalAeronautics and

Space Administration (NASA) (Minnis 2007; Minnis et al.

2008). This cloud product could provide hourly global cloud

water path (CWP; the sum of LWP and IWP) data. The reason

why observations are introduced to adjust the B is that the

hydrometeors frommodel simulations are currently insufficient to

reasonably characterize the distribution of the real cloud, espe-

cially the inaccuracies in position and magnitude. Similar idea is

also used by Geer and Bauer (2011) to develop the symmetric

observation error model for all-sky radiance assimilation by

combining information from observations and model predictions.

The B can be adaptively adjusted according to the nor-

malized CI, referred to as the cloud-dependent B. The key

technologies of the cloud-dependent piecewise assimilation

contain the following three main aspects, 1) the normalized

CI setup, 2) the cloud-dependent B adjustment in cloudy

areas, and 3) the determination of the adjustment coefficient.

a. The normalized CI setup

To match the cloudiness from observation space to model

space, CWP is first interpolated to the model grid points. To

ensure smooth adjustment of B, CI needs to be normalized.

Hence, CI is then expressed as a ratio of the CWP at each grid

point to the maximum CWP of the entire experiment domain

(Fig. 1) to ensure that the CI value is from 0 to 1:

CWPj5LWP1 IWP

CIj5 CWP

max(CWP)

.

8>><
>>: (1)

Therefore, the CI is normalized depending on CWP, which

varies in real time, ranging from 0 to 1. It is worth noting that if
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the experiment domain is completely cloud-free, even if this

happens rarely, the CI will be set to 0.

The CI can then delineate the clear and the cloudy 2D

geographical masks, denoted by Fclear and Fcloud operator,

respectively:

(
F
clear

, CI, 1023

F
cloud

, CI$ 1023
. (2)

The current study focuses on verifying the feasibility of the

cloud-dependency scheme, so the current definition of CI only

considers spatial dependency. Although the time dependency

is also crucial for cloud variables, it will be left for further

studies.

b. The cloud-dependent B adjustment in cloudy areas

In the variational framework assimilation system, the anal-

ysis increment dx can be expressed as

FIG. 1. (a) Meteorological situations for the B statistics. The 200-hPa geopotential height field (blue lines; unit:

gpm), 500-hPa geopotential height fieldwith the thickened line of 5880 gpm (red lines; unit: gpm), and 850-hPawind

vector field (vectors; unit: m s21) overlaid with 850-hPa water vapor mixing ratios (shaded; units: g kg21) of the

NCEP FNL (Final) operational global analysis averaged from 30 May to 30 Jun 2016. (b) Distribution of the

average NASA cloud water path observation from 30May to 30 Jun 2016, (c) distribution of the average simulated

cloud water path (Qi1Qc) in the samples used for B statistics, and (d) experimental domain with the distributions

of the conventional observations at 1800UTC 30 Jun 2016 used in this study. TheB statistics are performed onD01,

while the cycling assimilation and forecast are operated on D01 and D02.
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dx5 (x2 x
b
)5B1/2u , (3)

where background state vector is defined as xb, and x is the

state vector to be analyzed. The different CVs are defined as u.

The square root of B is represented as B1/2, which can be de-

composed to a series of submatrices:

B1/2 5U
p
U

y
U

h
, (4)

where the physical transform (Up), vertical transform (Uy), and

horizontal transform (Uh) compose the process of control

variable transform.

According to Courtier et al. (1998), the two isotropic co-

variance tensors can be simultaneously applied to two com-

plementary subdomains. Therefore, B1/2 can be decomposed

into two terms, with each term corresponding to the clear or

cloudy skies, thus,

dx5F
clear

B1/2
clearu1F

cloud
B1/2

cloudu . (5)

In Eq. (5), Bclear is the homogeneous B computed using the

NMC method over all grid points in the domain, as commonly

applied in operation models, which is also applied inMénétrier
and Montmerle (2011). For the grid points defined as cloudy

(Fcloud), Bcloud will be adjusted based on the homogeneous B

and a set of adjustment coefficients Iu when transforming from

physical space to spectral space (or EOF space) in Uy:8><
>:

B1/2
clearj5U

p
U

y
U

h

B1/2
cloudj5U

p
I
u
U

y
U

h

(6)

where Iu are a set of scalar variables larger than or equal to 0

and vary according to different CVs. It should be noted that the

adjustment of Bcloud is implemented during the Uy process,

which is a built-in part ofWRFDA. Thus, even though Eqs. (5)

and (6) demonstrate two B, the iteration only requires the

participation of the homogeneous B. When the presence of a

cloud is detected, the adjustment would be applied adaptively

on the vertical transform of the homogeneous B by the system.

The adjustment can also influence balance relationships and

length scales; however, their discussions are beyond this

paper’s scope.

One may notice that the covariance function will be dis-

continuous at the cloud mask border if B1/2 is directly adjusted

by Iu in cloudy areas. The discontinuity of the covariance

function makes the convergence of the cost function difficult.

To solve this issue, the equation is updated by taking Iu as the

base of the logarithm and CI as the exponent:

B1/2
cloud 5U

p
ICIu U

y
U

h
. (7)

There are two benefits for B1/2
cloud being formulated as the

exponential function of CI instead of a linear function: 1) Since

CI is normalized and approaches 1 with the increasing amount

of clouds, the usage of ICIu blurs the boundary of the mask,

allowing a smooth adjustment of B1/2
cloud at the border of the

cloud mask, 2) Treating CI as an exponent also reduces the

difficulty of coding implementation. This is because CI varies

from 0 to 1, and B1/2
cloud turns to be B1/2

clear when CI is very

small (ICIu 5 1).

Different from the redesigned heterogeneous B matrix, in

which the size of the CVs is doubled due to the multiplication

by two different B matrices (Montmerle and Berre 2010), this

method keeps the same sizes of CVs and cost function gradient

as the traditional schemes by directly adjusting the homoge-

neous B in cloudy areas. Thus, little extra computational load

is added.

The proposed scheme enables the cloud-dependent piece-

wise analysis according to cloud magnitudes. This scheme may

not be as effective as a full heterogeneous scheme obtained

from a flow-dependent forecast ensemble in an EnVar system.

Nevertheless, the scheme costs substantially less than the

EnVar scheme while accounting for the main statistical char-

acteristics in cloud regions.

c. Determination of the adjustment coefficient

To determine the adjustment coefficients Iu for each CV, it is

helpful to know the different characteristics of B for the clear

and cloudy areas. To characterize the Bmatrix in cloudy areas

separately, a two-dimensional cloud-dependent bin is devised

following the approach of Michel et al. (2011), so that the

cloudy samples can be separated as

«
b
5P

clear
«
b
1P

cloud
«
b
1P

mixed
«
b
, (8)

where «b is the background errors, and Pclear, Pcloud, and Pmixed

are projection operators, which denote clear, cloudy, and

mixed bins, respectively. Different from vertically averaged

rain content (
Ð top
bot

Qr) used in Michel et al. (2011), here, verti-

cally averaged cloud content [
Ð top
bot

(Qc 1Qi)] is used to define

the projection operators because broader coverage in

cloud content can provide more cloudy samples. Operator

Pcloud is determined only when the
Ð top

bot
(Qc 1Qi) is greater

than 0.01 g kg21 at the same points for both the 12- and

24-h forecasts which are used in the NMC (National

Meteorology Center; Parrish and Derber 1992) perturba-

tion calculation, i.e.,
Ð top

bot
(Qc 1Qi)$ 0:01 g kg21. Similarly,

when
Ð top

bot
(Qc 1Qi), 0:01 g kg21 for 12- and 24-h forecasts,

the bin is classified as Pclear. The samples are classified as a

‘‘mixed’’ bin when only one of 12- and 24-h forecasts hasÐ top

bot
(Qc 1Qi). 0:01 g kg21. Therefore, B can be expressed as

B5 «
b
«Tb 5P

clear
«
b
«Tb P

T
clear 1P

cloud
«
b
«TbP

T
cloud

1P
mixed

«
b
«TbP

T
mixed 5B

clear
1B

cloud
1B

mixed
. (9)

It should be noted that the mixed situation may be resulted

from cloud displacement error and usually occur in the

boundary of clouds with small sample sizes, which tends to

produce sampling errors in the statistics. Therefore, the focus

will be on the characteristics of the B statistics from clear and

cloudy bins.

In addition to the nonhydrometeor CVs in the B, which in-

clude the streamfunction (C), unbalanced velocity potential

function (Xu), unbalanced temperature (Tu), unbalanced rel-

ative humidity (RHu), and unbalanced surface pressure (Psu),

including hydrometeor CVs is also indispensable, especially
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when performing the assimilation in cloudy areas. In this

study, the hydrometeor-included B is constructed as Chen

et al. (2016).

Then, the errors in both physical and spectral spaces, i.e.,

standard deviations (SDs) and eigenvalues, in the Bclear and

Bcloud are used to determine Iu for each CVs:

I
u
5

cloud_sb
u

clear_sb
u

, (10)

where cloud_sb
u and clear_sb

u represents SDs or eigenvalues of

Bcloud and Bclear, respectively.

Theoretically, the definition of Iu should vary with the cloud

amount, so that the definition of Iu can be consistent with CI.

However, finer classification can lead to fewer samples for each

class, thus causing sample errors. It should be noted that the

calculation only provides a general magnitude for the ratio of

the error between the clear and the cloudy areas, and they can

be tuned in practice. Defining Iu more objectively should also

be considered in future studies.

3. Comparison of B in clear and cloudy areas

In this section,B over the clear (BE_CLR) and cloudy (BE_

CLD) areas will be generated, and then the errors of physical

and spectral space for each CV in Bclear and Bcloud, respec-

tively, are diagnosed. Finally, the adjustment coefficient Iu will

be calculated for each CV.

a. Meteorological situations and the statistical datasets

Mei-yu is an essential component of spring–summer pre-

cipitation in China, during which heavy rainfall frequently

happens. The Yangtze River basin experienced a more wide-

spread andmore intense rainfall process fromMay to July 2016

compared to an average year. The mei-yu in 2016 was the third

largest since 1951, with a total rainfall amount of 584.3mm

over the Jianghuai area during the mei-yu period, which is

108% above average and led to severe flooding (Yuan et al.

2017). The NCEP FNL (Final) operational global analysis

(Fig. 1a) shows that a strong anticyclone at 200 hPa (South

Asian high pressure; blue lines) is maintained over theYangtze

River basin. The ridgeline of the western Pacific subtropical

high (5880 gpm; thick red lines) extends from southern China

to southern Japan (500 hPa; red lines). The wind (vectors) at

850 hPa showed clear shear lines in the Yangtze River basin.

With this stable atmospheric circulation, the upper-level air

diverged, while the lower-level air converged, which favored

water vapor transportation and convergence, lead to persistent

precipitation. As is shown in Fig. 1b, the average hourly NASA

CWP observation from 30 May to 30 June shows that the av-

erage cloud observation was concentrated in South China and

the Yangtze River basin, which is consistent with the distri-

bution of main rainfall areas (not shown).

The sample datasets for B statistics are generated from the

WRF Model version 3.9 (Skamarock and Klemp 2008) con-

figured with 3213 321 grid points. The horizontal resolution is

set to 9 km (Fig. 1d, D01), and the terrain-following coordi-

nates are used for 51 vertical layers with the model top at

50 hPa. The analysis at 0.58 horizontal grid resolution from the

National Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS) is used to drive WRF

forecasts. The WRF double-moment 6-class microphysics

scheme (WDM6; Lim and Hong 2010) is adopted for the

microphysics parameterizations pairing with the Kaine–

Fritsch cumulus parameterization scheme (Kain and Michael

Fritsch 1990). The boundary layer scheme comes from the

Yonsei University scheme (Hong et al. 2006). The shortwave

and longwave radiation schemes are the Dudhia shortwave

schemes (Dudhia 1989) and the Rapid Radiative Transfer

Model (Mlawer et al. 1997).

A total of 63 perturbations files (12-h minus 24-h WRF

forecasts) generated for 1 month from 30 May to 30 June are

calculated as inputs to generate the B statistics using the NMC

method. The average simulated cloud water paths (Fig. 1c),

which represent the amount of Qc and Qi in an integrated

column, show that the distribution of clouds is generally

consistent with the CWP observation (Fig. 1b). For com-

parison, Bclear based on the samples under the clear skies is

also calculated.

b. Diagnostics of B over clear and cloudy areas

The variance part ofBweights the importance of background

in the assimilation. In this subsection, SDs in physical space and

eigenvalues in spectral space of BE_CLR and BE_CLD are

compared, respectively.

The SD vertical profiles of background errors (BE_CLR and

BE_CLD) for the nonhydrometeor and hydrometeor CVs are

shown in Fig. 2. For wind variables (C andXu, Figs. 2a,b), there

are two extremes located around 5th level (925 hPa) and 35th

level (200 hPa) meaning that theWRFmodel has a larger error

on these levels. The lower-level extreme values may be influ-

enced by the boundary layer where turbulent motion is strong

because of the complex topography and surface type; the

upper-level extreme values may be related to the westerly jet

stream, which has high wind speed, strong shear, and high

variability with the season, resulting in large simulation errors.

The temperature (Fig. 2c) also shows two error extremes, while

the relative humidity (Fig. 2d) SDs peak in the midtropo-

sphere. The vertical profiles of SDs for hydrometeors are

positively correlated to the distribution of those hydrometeors

themselves (not shown). It should be noted that the SDs of the

precipitable hydrometeors (Qr andQs) are larger than those of

the nonprecipitable hydrometeors (Qc and Qi). This may be

related to the magnitude of the precipitable hydrometeors

themselves, as precipitation has a larger value than clouds.

Besides, the SDs of the BE_CLD are larger than those of the

BE_CLR for all the CVs. It is indicated that the errors of

all the CVs in cloudy areas will increase. Compared to BE_

CLR, the SDs in BE_CLD for nonhydrometeor CVs increase

by ;1.5 times while those for hydrometeor CVs increase by

;2 times. The analysis field should be closer to the observation

when the background error is large. Therefore, the larger SDs

in the cloudy area will reduce weight in the background and

increase weight in observation during the minimization of the

cost function.

The eigenvalue is another critical parameter that reflects

the errors but in spectral space, which provides other insights

SEPTEMBER 2021 MENG ET AL . 3159

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:20 PM UTC



besides the above comparison of theBE_CLRand theBE_CLD

in physical space. The eigenvalues for the nonhydrometeor and

hydrometeor CVs are shown in Fig. 3. They are plotted with

respect to the EOF mode index, which represents the variance

each EOF model explains. It is clear that the eigenvalues of all

the CVs decrease as the EOF mode index increases, which

means the smaller the index is, the more variance is explained.

The eigenvalues of the BE_CLD are larger than those of the

BE_CLR both for nonhydrometeor (Figs. 3a–d) and hydrome-

teor (Figs. 3e–h) variables which is consistent with the variance

characteristics found in physical space. Compared to BE_CLR,

the eigenvalues of BE_CLD are increased by;1.5 times for the

nonhydrometeor variables, while they are increased by;3 times

for the hydrometeor CVs, except for Qi.

Another notable feature is that the eigenvectors for BE_

CLR and BE_CLD are almost identical (not shown), indicating

that the vertical error distributions of the CVs have little depen-

dence on the clouds after EOF decomposition. However, their

vertical autopropagation (indicated by the autocovariance, not

shown) is also enhanced over the cloudy areas.

From the above comparisons, it can be seen that the errors

vary depending on the weather types. It further confirms the

necessity of using B separately over clear and cloudy areas.

Overall, the errors for nonhydrometeor CVs are increased

about 1.5 times in cloudy areas, while those for hydrometeor

CVs are increased even more, up to 3 times. Therefore, ac-

cording to Eq. (10), Iuwill be set as 1.5 for the nonhydrometeor

CVs and 3 for the hydrometeor CVs, respectively. It is worth

noting that vertical cloud dependency has not been considered

in the current adjustment scheme due to the lack of vertical

information in the CWP observations, which will be updated in

future work.

4. Single-observation experiments using
cloud-dependent B

Pseudo-observations are assimilated to understand the re-

sponse of the assimilation system to the cloud-dependentB. As

shown in Fig. 4a, a set of pseudo–temperature observations are

placed on the latitude line (328N)with a 1.58-longitude interval,
crossing the region of the thickest cloud (represented by CI) at

0000 UTC 1 July 2016. At the 10th model layer, the innovation

is assigned to 1.0K with an observation error of 1.0K for each

temperature observation. Three experiments are conducted

with assimilating each single pseudo–temperature obser-

vation independently. No adjustment is made to B in cloudy

areas in the first experiment (hereafter, No_Adjust). Adaptive

adjustment is made to B according to CI but without the mask

boundary blurring in the second experiment (hereafter, Adjust_

no_Blur). The value of B is adjusted adaptively according to CI

with themask boundary blurring (hereafter, Adjust_Blur) in the

final experiment.

The temperature (T) increments along the west–east, which

go through each single observation point on 328N, are shown in

Figs. 4b–d. Analysis increment from each observation in the

No_Adjust experiment (Fig. 4b) has the unimodal shapes with

the same value because of the isotropic and homogeneous B.

The increments in cloudy areas are significantly larger than

FIG. 2. Vertical profile of error standard deviations for (a)C, (b)Xu, (c) Tu, (d) RHu, (e) Qcu, (f) Qiu, (g) Qru, and (h) Qsu as a function

of model level for BE_CLR (solid lines) and BE_CLD (dashed lines). Standard deviations represent the model background errors in

physical space, and a larger standard deviation indicates a larger model background error.
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those under the clear skies when B is adaptively adjusted with

CI in theAdjust_no_Blur experiment (Fig. 4c). However, there

are very sharp changes at the cloud/clear border, resulting in

discontinuities in this area. These discontinuities are alleviated

in the Adjust_Blur experiment (Fig. 4d) by applying the cloud-

dependent B with the blurred cloud mask border. The B can be

adjusted smoothly from the clear skies to the cloudy skies,

moderating the horizontal gradient at the cloud–clear boundary.

The temperature andQc increments in horizontal and vertical

for three representative points (A: clear sky; B: cloud mask

boundary; C: cloudy sky) are shown in Fig. 5. Three approxi-

mately circular temperature increments with the same magni-

tude and scale range are obtained in the No_Adjust experiment

(Fig. 5a). They also have almost the same vertical increments,

except for point A, which is influenced by the terrain (Fig. 5b).

The same horizontal and vertical increments are attributed to

the use of isotropic and homogeneous B. Similar Qc increments

are also created via the covariance between temperature and

Qc. In theAdjust_no_Blur experiment, the increments in cloudy

areas (C points) are larger than those in the clear skies (A

points) both in temperature and Qc. However, the apparent

discontinuities exist in the cloud–clear boundary (B points). The

Adjust_Blur experiment achieves larger increments in cloudy

areas while mitigates the cloud–clear boundary discontinuities

and generates some cloud dependency (C point).

5. Impacts of cloud-dependent B on the precipitation
forecast

The mei-yu from 20 June to 10 July 2016 is selected for the

3-week cycling data assimilation and forecast experiments to

evaluate the impact of the cloud-dependent B on real cases.

Numerous continuous heavy rainfall processes occurred during

the mei-yu period in 2016.

a. Experiment configurations

Themodel grid and physics configuration consistent with the

B statistic sample dataset are used for the evaluation experi-

ments (section 2c). Besides, a 3-km nested grid (D02) is added

for more accurate forecasting. To facilitate understanding of

the workflow of the cloud-dependent B, Fig. 6 illustrates the

update of cloud-dependent B in the cycled assimilation. As

discussed above, CWP is used to generate the normalized CI,

which is updated in real time. Then, B will be adaptively ad-

justed in cloudy areas according to CI during the assimilation.

The cloud dependency and adjusted value are constant in it-

erations for a cycle.

To evaluate the impacts of the cloud-dependent B, two ex-

periments are carried out. The isotropic and homogeneous B

without adjustment in cloudy areas for the first experiment

(hereafter ‘‘EXP_AVE’’), while the second experiment uses

the cloud-dependent B with the blurred cloud/clear border

(hereafter ‘‘EXP_CLD’’). Both experiments assimilate the

conventional observations datasets, including upper air and

surface weather observations (Fig. 1d) and LWP and IWP

produced by the NASA LaRC. The observation operators for

LWP and IWP developed by Chen et al. (2015) for the

WRFDA system are used to assimilate the cloud products.

For both experiments, a total of 157 partial cycling analyses

and 12-h forecasts are conducted from 1800 UTC 20 June to

0600 UTC 10 July 2016 at an interval of 3 h. Due to the cloud’s

rapid evolution, the 3-hourly rapid update cycle is expected to

FIG. 3. The eigenvalues calculated as a function of EOFmode for (a)C, (b)Xu, (c)Tu, (d) RHu, (e) Qcu, (f) Qiu, (g) Qru, and (h) Qsu for

BE_CLR (solid lines) and BE_CLD (dashed lines). The eigenvalues represent the model background errors in spectral space. The larger

the eigenvalue, the greater the model error.
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contribute positively to the analysis results. As is shown in

Fig. 7, each partial cycling starts at 1800 UTC with the back-

ground field taken from a 6-h spinup initialized at 1200 UTC

every day. It should be noted that all the assimilations are only

carried out at D01.

b. Verification against radiosonde observations

Based on all available radiosonde observations, the average

BIAS of analysis and 12-h forecast during the cycling period is

calculated to evaluate the two experiments. Figure 8 shows

the bias profiles for the prognostic variables, U-wind (U),

V-wind (V), temperature (T), and specific humidity (Q),

with respect to vertical level. The wind analysis in the

EXP_CLD experiment (Figs. 8a,c) fits the wind observa-

tions more than that in the EXP_AVE experiment above

850 hPa, especially for V (Fig. 8c), which could result in

more accurate moisture advection and vertical transport.

In contrast to the EXP_AVE experiment, the improvement for

temperature (Fig. 8e) in the EXP_CLD experiment is only

achieved in the lower troposphere. The improvement in specific

humidity is pronounced with considerably smaller moisture

bias at the lower troposphere in the EXP_CLD experiment

(Fig. 8g). After a 12-h forecast, the improvement on wind fields

(Figs. 8b,d) and temperature (Fig. 8f) become neutral, showing

that the impact of cloud-dependentB is limited on 12-h forecasts

for wind and temperature. For humidity, most levels above

925 hPa have a smaller bias (Fig. 8h) in the EXP_CLD experi-

ment, indicating that the humidity field is more sensitive to the

cloud-dependent B.

In addition to the bias, the average root means square error

(RMSE) is also calculated to assess the errors in the analysis

and 12-h forecast fields. Figure 9 shows the RMSE profiles for

FIG. 4. (a) The cloud index distribution (shaded) calculated from cloud water path at 0000 UTC 1 Jul 2016, and

the distribution of the pseudo-observation-point locations (black dots) for single observation tests. Each pseudo-

observation point is located at 328N, with a 1.58-longitude interval. The temperature increments (unit: K) along the

line of latitude (328N) that go through each single observation point at the 10th level of (b) the No_Adjust ex-

periment, (c) the Adjust_no_Blur experiment, and (d) the Adjust_Blur experiment.
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the same prognostic variables (U, V, T, and Q). There is a

larger RMSE for the 12-h forecast fields than the analysis fields

for the four variables, but no obvious difference is found be-

tween the EXP_CLD and the EXP_AVE experiments. Little

differences may be explained by the fact that the radiosonde

observations used for the verification are too sparse compared

to the small-scale cloud areas, resulting in slight differences in

RMSE between the two experiments.

The bias and RMSE results demonstrate that the EXP_CLD

experiment with the cloud-dependent B is overall superior to

EXP_AVE with the static B. It is expected that the cloud-

dependent B gives higher weights to observations in cloudy

areas and reflects the dynamic changes more appropriately,

making the analysis and forecast more accurate.

c. Rainfall forecast skill scores

Three rainfall verificationmetrics are applied to evaluate the

impact of the cloud-dependent B on precipitation forecasts.

The first verification metric is the equitable threat score

(ETS), a measurement of the portion at which the observed

event is correctly predicted, effectively removing the effect of

random precipitation on the score. The ETS varies from 21/3

to 1. The higher the ETS score, the better the forecasting skill,

and a value of 0 or negative means no forecasting skill. The

second method is the False Alarm Ratio (FAR), which mea-

sures the ratio of the false alarm number to the total predicted

events number. FAR 5 1 indicates 100% false prediction,

while FAR5 0 indicates the forecast captures all the observed

rainfall for the given magnitude. The third method is the

probability of detection (POD), which is used to measure the

percentage of correctly forecast events. The range of POD is

0–1 with a perfect value of 1. The observation from the China

Hourly Merged Precipitation Analysis (CHMPA) with 0.058 3
0.058 spatial resolution (Pan et al. 2018 in Chinese) is used as a

reference for the D02 (Fig. 1d) Rainfall skill scores calculation.

Figure 10 shows the ETS, FAR, and POD scores of 6- and

12-h accumulated precipitation for thresholds commonly used

by the operational centers in China (Figs. 10a–f) and the im-

provement ratios of the EXP_CLD experiment compared to

the EXP_AVE experiment (Figs. 10g,f). Compared to the

FIG. 5. (a),(e),(i) The temperature increments (shaded; unit: K) at the 10th level as a result of assimilating three pseudo–temperature

observations located at A (clear-sky area), B (edge of cloudy area), and C (cloudy area), respectively. Contours indicate the CI. (b),(f),(j)

The vertical cross sections of the temperature increment is along 328N. (c),(g),(k) and (d),(h),(l) As in (a),(e),(i) and (b),(f),(j), respec-

tively, but for Qc increments. The results are from (a)–(d) the No_Adjust experiment, (e)–(h) the Adjust_no_Blur experiment, and (i)–(l)

the Adjust_Blur experiment.
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EXP_AVE experiment, the ETS in the EXP_CLD experiment

is improved clearly at almost all verification thresholds except

for a slight deterioration (less than 1%) in the moderate rain-

fall category in 6 and 12-h forecast. The average improvement

in ETS is about 4% for the 6-h forecast and 3% for the 12-h

forecast. With increasing thresholds of scores, POD decreases

gradually in both 6-h (Fig. 10e) and 12-h (Fig. 10f) results, but

the POD of the EXP_CLD is better than the EXP_AVE

overall. The improvement ratios in POD share similar ETS

patterns, but their values are more pronounced, especially for

extreme heavy rain. The improvement ratios in both ETS and

POD gradually increase as the verification magnitude in-

creases. It indicates that the cloud-dependentB application can

effectively improve precipitation forecasting skills for heavy

and extremely heavy rainfalls. However, there is a minor dif-

ference in the FAR between the two experiments, with only a

slight improvement in the 6-h forecast.

Hourly ETS, FAR, and POD are also calculated to hourly

accumulated precipitation for light rainfall (with 1-mm thresh-

old values) and heavy rainfall (with 2-mm threshold values).

For the 1mm threshold, the ETS metric (Fig. 11a dashed

lines) shows that the EXP_CLD experiment is better than the

EXP_AVE experiment for the first 9 forecast hours. For the

2-mm threshold, even though ETS is lower than the light

rainfall scores, the positive impacts are still obtained in the

EXP_CLD experiment for the first 9 forecast hours. For the

FAR, the result for the 1-mm threshold is significantly lower

than for the 2mm, but the two experiments are comparable.

The improvement in POD mainly contributed from the first

6 h, after which the differences between the two experiments

are minimal. The results for other larger thresholds are sim-

ilar to the patterns of 1- and 2-mm thresholds, but with dif-

ferent values (not shown).

Figures 10 and 11 show that cloud-dependent B can effec-

tively improve the precipitation scores in the first 6–9 h. The

cloud-dependent B used in the EXP_CLD experiment allows

more critical information in cloudy areas, especially cloud

observations, to be assimilated to improve the initial fields,

leading to more accurate precipitation forecasts.

6. Diagnostics for an extremely heavy rainfall event

To further investigate how the cloud-dependent B contrib-

utes to analysis and forecast, an extremely heavy rainfall event

FIG. 7. Flowchart of the partial data assimilation experiments. ‘‘DA’’ means data assimilation.

FIG. 6. Schematic diagrams for the update of the cloud-dependent B.
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FIG. 8. The average BIAS vertical profiles of (a),(c),(e),(g) analysis and (b),(d),(f),(h) 12-h

forecasts verified against radiosonde observations for the EXP_AVE (blue lines) and EXP_CLD

(red lines) experiments. (a),(b) U wind (unit: m s21), (c),(d) V wind (unit: m s21), (e),(f) tem-

perature (unit: 8C), and (g),(h) specific humidity (unit: g kg21). The right ordinates represent the

total number of observationsused for verification from1800UTC20 Jun to 0600UTC10 Jul 2016.
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from 30 June to 1 July 2016 is chosen for diagnosis. The water

vapor is transported along the edge of the subtropical high to

the Yangtze–Huaihe River valley, where it rises in a conver-

gence zone. As the southwest vortex (SWV) moves eastward

along the low shear line (700 hPa), the water vapor conver-

gence is enhanced (not shown), resulting in this extremely

heavy rainfall. In other words, sufficient water vapor and strong

upward motion dominated this heavy precipitation event.

a. 12-h accumulated precipitation

The 12-h accumulated precipitation displayed in Fig. 12 is

based on the results of the subdomain D02. It can be seen

that the observations from the CHMPA show a predomi-

nantly east–west band, and the heavy rainfall centers are

divided into two areas (A and B). Both EXP_AVE and

EXP_CLD experiments perform well for the rainfall fore-

cast in area A. However, the EXP_AVE experiment has a

negative simulation bias at B point compared to the obser-

vations. Besides, the simulated rainfall in northeast of the

major rainband (marked by C) from the EXP_AVE exper-

iment is stronger than the observations, reaching the tor-

rential rainfall category. As a comparison, the maximum

rainfall center in area A is well captured with the rainfall

centers in area B improved in the EXP_CLD experiment,

and the rainfall magnitude is more consistent with the ob-

servations. Besides, the false torrential rainfall in the C area

is also reduced.

b. Humidity, wind, and hydrometeor analysis and forecasts

Cross sections of the relative humidity and cloud content

(Qc 1 Qi) analysis along 117.58E (shown in Fig. 12a dashed

line) at 1800UTC 30 June 2016, and the associated 3h forecasts

(additionally add 2D wind vectors) are shown in Fig. 13. The

relative humidity in lower layers (below 700 hPa) is enhanced

FIG. 9. The averageRMSE vertical profiles verified against radiosonde observations for the

EXP_AVE (blue lines) and EXP_CLD (red lines) experiments for (a) U wind (unit: m s21),

(b) V wind (unit: m s21), (c) temperature (unit: 8C), and (d) specific humidity (unit: g kg21).

The right ordinates represent the total number of observations used for verification from

1800 UTC 20 Jun to 0600 UTC 10 Jul 2016. The solid line represents 6-h forecast results, and

the dashed line represents 12-h forecast results.
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in the EXP_CLD experiment (Fig. 13c) compared to the

EXP_AVE experiment (Fig. 13a) in the precipitation

centers. Compared to EXP_AVE, the hydrometeor ana-

lyses in the EXP_CLD experiment shows higher cloud

amounts and thicker clouds in the main precipitation area

(black dashed box). After the 3-h forecast, moisture con-

ditions over the central rainfall region in the EXP_CLD

experiment (Fig. 13d) remain stronger than those in the

FIG. 10. Rainfall forecast scores for (a),(c),(e) 6- and (b),(d),(f) 12-h accumulated rainfall according to opera-

tional precipitation standard thresholds for (a),(b) equitable threat score (ETS); (c),(d) false alarm ratio (FAR);

and (e),(f) probability of detection (POD). Average improvements in the percentage of the EXP_CLD experiment

compared to the EXP_AVE experiment in different standard thresholds for (g) 6- and (h) 12-h accumulated

rainfall.
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EXP_AVE experiment (Fig. 13b), with a wider area being

saturated. The forecast also produces more hydrometeors

over the central rainfall region. The vertical wind circula-

tion in the EXP_CLD experiment is broader and stronger

over the central rainfall region, which transports more

water vapor from the lower to the upper levels, providing

favorable precipitation conditions.

Thus, the cloud-dependent B application improves the

analysis of moisture and hydrometeors, which produces more

favorable conditions for precipitation.

c. Precipitable water and divergence analyses and forecasts

Precipitation magnitudes are closely associated with atmo-

spheric precipitable water and the convergence and divergence

of wind. Figure 14 shows the distributions of atmospheric

precipitable water differences and divergence at 850 hPa for

the analysis and associated 3-h forecast. For the difference

in analysis fields, the EXP_CLD experiment is slightly

wetter than the EXP_AVE experiment in the main pre-

cipitation area. Some convergence of lower-level wind

fields is achieved simultaneously. After the 3-h forecast, with the

influence of southerly winds (not shown), the region of high

precipitable water moves northward. The precipitable water in

the EXP_CLD experiment is enhanced compared to the

EXP_AVE experiment, while the convergence of low-level

air gradually strengthens with the forecast. The cloud-

dependent B application improves the analysis fitting to water

vapor and wind observations, resulting in stronger precipitable

water and greater airflow convergence in the lower layers, fa-

voring the precipitation.

7. Conclusions and discussion

Various studies have pointed out that the complicated

physical processes in cloud regions can lead to very different B

characteristics between the clear and cloudy regions. However,

most variational framework assimilation studies remain to use

an isotropic and homogeneous B without considering the sur-

rounding meteorological conditions.

The horizontally scale-dependent correlations across vari-

ables, as noted by Caron and Fillion (2010), motivated the

development of heterogeneousB. Built on previous works, this

study proposes a cloud-dependent B with the inclusion

of hydrometeor CVs to achieve a better piecewise analy-

sis of nonhydrometeor variables and hydrometeors. The

WRFDA system is modified to enable adaptive adjustment

FIG. 11. Rainfall forecast scores with a threshold of 1mm (dashed line) and 2mm (solid lines) as a function of forecast time for (a) ETS,

(b) FAR, and (c) POD.

FIG. 12. The 12-h accumulated precipitation beginning at 1800 UTC 30 Jun 2016 for (a) the precipitation observation, (b) the EXP_AVE

experiment, and (c) the EXP_CLD experiment. The simulated precipitation results come from the subdomain D02.
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of B over the cloudy areas according to a 2D CI deduced

from satellite-based cloud products. The cloud-dependent

B for each horizontal grid defined as cloudy can be adap-

tively adjusted based on the amount of cloudiness and the

adjustment coefficients, which are calculated by comparing the

characteristics ofB over clear and cloudy areas. In this way, the

analysis is closer to observation where cloud or rainfall occurs,

enabling multivariate analysis that includes hydrometeors. A

series of single observation tests confirm the advantages of this

cloud-dependent piecewise analysis scheme. The multivariate

analysis increments show that the cloud-dependent B gives

higher weightings to temperatures observation in cloudy areas

due to the cloud-dependent error statistics.

A 3-week cycling DA and its impact study reveal that the

cloud-dependent B can be applied to make more efficient use

of observations and reduce average bias in analyses and fore-

casts. The positive impacts can also be found in ETS, FAR, and

POD rainfall forecast skill scores, the improvement is pri-

marily contributed by the first 6 h, with main improvements in

the ETS and POD scores, leaving little improvement in the

FAR. The detailed diagnostics further show that the DA sys-

tem places more weight on the observations under the cloud

skies by using the cloud-dependent B, resulting in the en-

hanced water vapor, wind, and hydrometeors over the central

precipitation region. These favorable conditions facilitate the

development of precipitation.

Even if EnVar can currently provide real flow-dependent

analysis, relying solely on cloud information to achieve

cloud-dependent analysis in a variational framework is

still a worthy exploration for institutions with insufficient

computational resources. The cloud-dependent piecewise

analysis proposed in this study is based on the specific cloud

and precipitation environment. This method can be ex-

trapolated to different weather environments with local

variabilities, such as aerosol assimilation. The flexibility of

the CI allows for defining CI on a variable-by-variable ba-

sis, which is very important in the combined assimilation of

multisource observations. Since the core component in our

cloud-dependent scheme is the CI specification, improved

CI specification can further improve the analysis and con-

vective forecasting.Oneway to improve theCI specification is to

consider the inclusion of the background hydrometeors, which

may mitigate displacement problems, such as for cloudy

background with clear observations and vice versa. As dis-

cussed in section 2a, adding time dependence to the CI

definition is also one of the goals to be explored in future.

Future research also can include machine learning, using

artificial intelligence (AI) algorithms to provide CI.

Besides, the assimilation of high-density satellite radiance

with the cloud-dependentB and the symmetric observation

error model (Geer and Bauer 2011) deserves further

investigations.

FIG. 13. Cross sections along the dashed line in Fig. 12a of (a),(c) analysis at 1800 UTC 30 Jun 2016 and associated

(b),(d) 3-h forecasts for relative humidity (shaded; %), cloud content (contours; hydrometeor boundary defined by a

threshold mixing ratio of 0.05g kg21), and 2Dwind vectors (vectors; units: m s21; only available in forecasts). (a),(b) The

EXP_AVE experiment and (c),(d) the EXP_CLD experiment. The pink rectangle shows the main precipitation area.
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